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Numerical methods for estimating Hausdorff dimension, useful in the analysis of 
turbulence, are explained and applied to a specific example. In particular, methods involving 
resealing and approximation by Cantor sets are discussed. 

1. INTRODUCTION 

The need to estimate Hausdorff dimension numerically has arisen in several 
problems connected with turbulence theory, in particular in the analysis of three- 
dimensional vortex motion [2, 31, in the analysis of stochasticity in dynamical 
systems [ 1,6, 131, and in the theory of turbulent flames [4]. Related notions of 
dimension are also of significance [6, 131, and other applications are likely to appear 
(see, e.g., [ 11 I). The methods used in the literature to estimate Hausdorff dimension 
include a straightforward application of the definition [2], or of a modified definition 
(6, 131, and a resealing technique followed by an approximation by Cantor sets [3]. 
The purpose of the present paper is to explain these methods and validate them by 
applying them to a set whose dimension is known. 

The resealing technique is of iarticular interest, because it strongly resembles the 
renormalization group techniques which are of increasing interest in physics (see, e.g., 
[ 151); in the particular problem considered in this paper, the technique can be readily 
seen to be valid. 

We begin by defining Hausdorff dimension [S]. Consider a compact set C; cover it 
by balls of radii pi < p. Form the sum 

where D is a positive number. Consider the quantity 

h(D) = Fz lim inf S(D), (1) 
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where the lim inf is taken over all covers with pi <p; h(D) is the measure of C in 
dimension D. The number 

D* = greatest lower bound of D for which h(D) = 00 

= least upper bound of D for which h(D) = 0 . 

exists, and is the Hausdorff dimension of C. For a cube, D* = 3; for a square, 
D* = 2; for a segment, D* = 1; according to [2, 31, the essential L, support of the 
vorticity in incompressible inviscid flow has dimension D* - 2.5. 

We shall apply our methods of estimation to the set Z of zeros of Brownian 
motion. Let x(t), 0 < t < 1, be a realization of Brownian motion (for a definition, see, 
e.g., [9]). The set of its zeros is the set of t’s such that x(t) = 0. This set has, with 
probability 1, Hausdorff dimension D* = 4 [8, 141. We shall use the following 
properties of Brownian motion: (i) The interpolation property [IO]: If x(.) is 
normalized so that x(l) has variance f, and if x(tl), x(t,) are known, then the 
conditional distribution of x(t), t, < t < t,, is given by 

x(t) = xtt,> + (t - tAW2) - XtflYtf2 - t1> 

+ (02 - at - t*)/(t* - w*w (2) 

where w is a Gaussian random variable with mean zero and variance $. (ii) Self 
similarity: x(t), 0 < t < 1, and \/;;x(t/a), a > 0, 0 < t < 1, are equivalent processes. 

Z is a random set. A comparison of our calculations here with the calculations in 
[2,3] shows that Z is a much more irregular set than the sets of noninteger 
Hausdorff dimension generated by smooth differential equations, and the numerical 
estimation of the dimension of Z is not trivial. The methods used here are similar, but 
not identical, to the methods used in [2, 31. Dimension is but one property of a set, 
and thought is required in each special case. 

2. A COVERING SCHEME 

We begin by covering the set of zeros of x(-) by segments of equal lengths 
(somewhat in the manner of the construction in [ 131). Pick x( 1) by sampling the 
appropriate Gaussian distribution (an algorithm for sampling Gaussian distributions 
can be found, e.g., in [ 121). By definition, x(O) = 0, and thus [0, l] contains at least 
one member of Z. 

Divide [0, l] into [0, $1, [j, 01. A value of x(f) can be found using (2): x(f) = 
x(1)/2 + 2-3’2w. If x(1/2) x(1) < 0, [l/2, l] contains at least one zero. 

More generally, define an iteration to be the following sequence of operations: 
Divide each one of the intervals from the preceding iteration into two halves; values 
of x(a) at the end points of the new intervals are either available from the preceding 
iteration or can be sampled by applying formula (2) which in this special case reads 

x (middle) = i(x- +x+) + i fiw, (3) 
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where x (middle) is the value of x(.) in the middle of an old interval, x_ and x, are 
the values of x(e) at the left and right ends of an old interval, A is the length of a new 
interval, and w is defined as in (2). 

Let x-,x+ now denote the values of x(.) at the ends of a new interval. If 
x-x+ < 0, the interval surely contains a zero of x(-). If x-x+ > 0, Ix- 1 > K @, 
/x+ / > K\l;j; K large enough, there is a negligible probability that the interval 
contains a zero (see [lo]) and the interval can be removed from further 
consideration. If neither of these conditions holds, the interval may or may not 
contain a zero. * . We consider the quantity hm,,, ndD, where A = 2-’ is the length of the intervals 
after the ith iteration, and n is the number of intervals which are known to contain 
zeros (they satisfy x-x+ < 0). The difference between this quantity and the quantity 
h(D) in (1) lies in the fact that all the radii A/2 are equal and also in the fact that the 
lim inf operation in (1) has not been carried out. Thus lim 2-DndD is an upper bound 
on h(D). The number 

B = greatest lower bound of D for which nAD -+ 0, 

= least upper bound of D for which nAD + co, 

is an upper bound on the dimension D* of 2. We shall be computing 6, and we shall 
assume without proof that B = D*. From the numerical analysis point of view it does 
not matter whether this (highly plausible) assumption is correct, since we shall obtain 
estimates of 0’ with error estimates. In the calculations of [2, 31 the lim inf in (1) is 
computed correctly. In [ 131, a quantity analogous to 6 is evaluated. 

In Table I we display values of nAD for several values of D as functions of the 
iteration i. For D < D*, nAD should be increasing; for D > D*, nAD should be 

TABLE 1 

Values of nAD as Functions of i and D 

D 
i 

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 

1 0.35 0.24 0.17 0.12 0.088 0.062 0.044 0.03 1 
2 0.34 0.23 0.16 0.11 0.075 0.05 1 0.035 0.024 
3 0.27 0.17 0.11 0.078 0.05 1 0.034 0.022 0.014 
4 0.5 1 0.32 0.20 0.13 0.084 0.053 0.034 0.02 1 
5 0.46 0.28 0.17 0.10 0.067 0.04 1 0.025 0.015 
6 0.68 0.40 0.24 0.14 0.085 0.050 0.030 0.017 
7 0.74 0.42 0.29 0.14 0.080 0.046 0.026 0.015 
8 0.97 0.53 0.29 0.16 0.09 1 0.05 1 0.028 0.015 
9 1.04 0.55 0.29 0.16 0.085 0.045 0.024 0.015 

10 1.06 0.55 0.28 0.14 0.079 0.039 0.020 0.010 



NUMERICAL ESTIMATES OF HAUSDORFF DIMENSION 393 

decreasing. We set K = 4 (we shall show below that this is a large enough value of 
K). The calculation must be stopped after a finite number of iterations because the 
number of intervals quickly overwhelms the available computer memory and because 
A shrinks to below the underflow limit of the computer arithmetic. A reasonable 
person looking at Table I could conclude that D* lies somewhere between 0.45 and 
0.6~not a dramatically accurate answer. In the next section we shall see how this 
estimate can be improved without catastrophic expense. 

3. RESCALING 

Suppose the number of segments in the calculation (both the segments known to 
contain zeros and those which may turn out to contain zeros) exceeds a preset 
number no (we usually set n, = 100). Then rescale n, i.e., throw away half the 
segments in such a way that the expected number of segments which contain zeros in 
the rejected half equals the number of such segments in the retained half. We shall 
call such a rejection “unbiased.” An unbiased rejection can be easily achieved; for 
example, each time a segment is halved, store the parameters relating to one-half of 
the old segment in the array location in which the old segment was remembered and 
store the prameters which describe the other half at the end of the array. A rejection 
of the first or the second half of the resulting array is unbiased. Perform this resealing 
at each iteration if needed. Segments which are not likely to contain zeros may, in the 
interest of efficiency, be thrown out as soon as they are generated. 

If the segment length A become smaller than a preset A,, (we usually set A, = 0.01 
or A,, = O.OOl), rescale A, i.e., double A, and, in order to leave Z invariant, multiply 
all values x-, x+, by fi (see the self similarity property (ii) above). 

If there are n segments with a sure zero in the computer at the end of an iteration, 
there would have been -Nn segments in the computer if resealing had not been used, 
N = 2’1, where I, is the number of resealings of n. If A is the length of the segments as 
stored in the computer, the real length is A/M, M = 2’2, where I, is the number of 
resealings of A. Thus D < D* if NMeDnAD + 00, D > D* if NM-“nAD -+ 0. We 
could again estimate D* by following trends in the evolution of NM-“nAD for 
several values of D. 

A sharper estimate is available, however. By construction, 1 < n < 2n, and 
A,, < A < 24,. Thus nAD is, for each D, a positive quantity bounded from above and 
bounded away from zero. Thus NMpDnAD tends to zero or infinity if NM-D does. 
Therefore, as N-+ co and M+ co, we must have M-D* = O(N) and 

TABLE II 

Estimates of D* with 60 Iterations 

0.49 0.54 0.5 1 0.50 0.54 
0.46 0.53 0.45 0.52 0.48 
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TABLE III 

Estimates of D* with 600 Iterations 

0.506 0.500 0.503 0.496 

D* + log N/log M. In Table II we display values of log N/log M obtained after 60 
iterations in different runs, each run using a different sequence of random numbers to 
generate Z. In 60 iterations n is typically resealed 6 to 7 times and d about 40 times. 
In Table III we display estimates of D* obtained in a similar fashion with 600 
iterations (n, = 100). These iterations are very inexpensive (each one takes a second 
or two on a VAX computer); after 600 iterations, the error in the estimate of D* is 
under 1%; without resealing, the same accuracy would have presumably required 
about 2400 z 10”’ segments stored in the computer- an unimaginably expensive 
enterprise. 

Finally, we can check how large K must be before we are reasonably sure that an 
interval contains no zeros. Numerical experiment shows that the estimates of D* are 
independent of K as long as K > 2. 

4. APPROXIMATION BY CANTOR SETS 

We now describe a method for estimating the dimension of a set by approximating 
the given set by a suitable Cantor set. 

The Cantor sets we shall use are constructed as follows: Consider the interval 
[0, 11, and divide it into m > 2 segments of length l/m. Keep s < m of these 
segments, s > 1, and throw out the other. Divide each one of the remaining segments 
into m pieces of equal lengths and throw out all but s these, etc. The remaining set 
has Hausdorff dimension D* = log s/log m. This can be easily seen if one assumes 
that the measure of the remainder in dimension D* is positive: The Hausdorff 
measure of disjoint sets is additive, and if a set B is similar to a set A with a 
similarity ratio L, the ratio of their measure in dimension D is LD. Thus, if h(D*) is 
the measure of the remainder set in dimension D*, we have 

h(D*) = (s/m”*)) h(D*), 

i.e., 

D* = log s/log m. 

For details, see [7, 111. 
Consider again the set Z. Let I, be an integer. Divide [0, l] into 1, segments of 

equal lengths. Find the values of a realization of x(e) at the end points of those 
intervals, using the interpolation formula (2). This is done with ease if I, = 2’2, 1, 
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integer, since then formula (3) can be used recursively. Delete the intervals which are 
not likely to contain zeros, i.e., those characterized by X-X+ > 0, Ix- 1 > 2 @, 
Ix+ ) > 24, where as before d is the length of the interval and x- , x+ the values of 
x(.) at its ends. Suppose there are 1:” intervals left. Define El = log I\“/log 1,. 

Throw away all but 1, of the remaining intervals. Divide each one into I, = 2’2 
pieces, decide which pieces are unlikely to contain zeros and throw them out. 
Suppose there are I\” pieces left; there are 1:*)/l, such pieces in each of the starting I, 
intervals. Let D, = log(l~*‘/l,)/log 1,. 

Keep iterating in this manner: Start with I, pieces, divide each one into 1, smaller 
pieces, compute the number I:” of pieces left, and let Oi = log(l:“/l,)/log 1,. 
Whenever the intervals become too small for convenient computation, rescale them, 
i.e., multiply their lengths d by a suitable factor A and multiply the x- , x, by \/;ir, as 
was done above. 

If all the I:” were equal to a fixed integer I,, independently of the choice of 
intervals to subdivide, all the oi would be equal, and the set remaining after an 
infinite sequence of rejections would be a Cantor set of Hausdorff dimension fi= oi 
for all i. This set would be larger than 2 because at each step we keep intervals which 
may contain zeros, but in fact will turn out to contain none. Thus o> D. If the 15” 
are not equal, we can view the numbers oi as estimates of 0. The first 10 estimates 
of D are listed in Table IV. The averages of the fii after 50 steps, with I, = 5, 1, = 4, 
in one particular run, was 0.56 with standard deviation 0.025. Thus 0.56 f 0.025 is 
an estimate of an upper bound fi of D*. 

We now produce a construction which will provide an estimate of a lower bound Q 
of D*. Proceed exactly as in the preceding construction but change the criteria for 
rejecting intervals. Retain each interval which surely contains a zero (x-x, < 0). 
Reject each interval not likely to contain a zero (defined as in the preceding section). 
Consider the remaining segments whose fate is uncertain (and which were retained in 
the preceding construction). Given an interval of length d, with values x-,x+, of 
x(a) at its extremities, let p(d, x-, x+) be the probability that it contains a zero. 
Construct an algorithm which retains the interval with probability p (and rejects it 
with probability (1 - p)). This is easily done: Let k be an integer. Divide A into k 
subintervals of lengths A/k, and use (2) again to construct a Brownian arc connecting 
x- x, . If the resulting arc crosses the t axis, we keep the segment, and if it does not, 
we reject the segment. For k large enough (in practice, k > 64), we are keeping the 
segment with approximately probability p. 

As before, if the 15” were equal we would have a set with Hausdorff dimension 
Q = Qi s log(Z:“/Z,)/log(Z,), where the I:” are the numbers of segments retained 

0.35 
0.74 

TABLE IV 

First 10 Estimates of 0, I, = 5, I, = 4 

0.14 0.16 0.69 0.68 
0.38 0.52 0.35 0.61 
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TABLE V 

First 10 Estimates of 0. I, = 5, I, = 4 

0.38 0.51 0.36 0.56 0.55 
0.48 0.40 0.44 0.29 0.64 

according to the new criteria, while I,, I, are defined as before. Q is a lower bound on 
D* because the remaining set is too small-each doubtful segment has a probability 

p of being rejected, but if it kept in one iteration it may be rejected later because the 
applications of the interpolation formula (2) are independent. The Qi, however, are 
not equal and are only estimates of Q. In Table V we list the first 10 estimates of Qi 
of 0, with I, = 5, I, = 4; the average of the Qi after 50 steps was 0.48 f 0.015. Thus, 

and we have found 
5 = 0.56 k 0.025 

Q = 0.48 f 0.015. 

0 - fi# 0 because Z is a random set, unlike the sets encountered in the applications 
to differential equations. We have obtained fairly sharp estimates of 0’ and Q but a 
rather poor estimate of D*. The best estimate of D* was obtained by the resealing of 
the preceeding section. 
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